VAEを用いたなりすまし検知を書き直してみる

こちらの記事「VAEを用いたUNIXセッションのなりすまし検出」はソースコードが完全に公開されていないので、補完してみました。

環境

  • macOS 10.14
  • python 3.7

データ準備

まず、データを準備します。こちらからダウンロードします。ダウンロードしたら、解凍し、Fasttext用にデータを結合します。各ユーザの前半の5000は訓練用のデータで、なりすましがないデータですので、これをすべてのユーザから抽出します。ユーザごとに一行にコマンドをスペースでつないで作成します。全部で五十行になります。

Fasttextによるベクトル化

単語をfasttextによりベクトル化します。50次元を使っています。fasttextはpipでインストールしたものでもOKです。

UMAPによる可視化

元記事では出現頻度の高いコマンドから200取り出して、可視化していますが、面倒なので、modelの単語列から上位50単語を抜き出して可視化します。

モデル

元記事のものではそのままでは動かなかったので多少修正しています。

入力データ

入力データを作成します。ファイルから再度読み込んで、訓練データを上位4000コマンド、テストデータを4001から5000コマンドで作成します。また、元記事と同様にUser2を使っています。

訓練

Earlystoppingを入れました。訓練は100コマンドをひとかたまりとして訓練しています。

結果の可視化

訓練データでのLossを可視化します

テスト

最後に、1%の確率でなりすましが入っているという各ユーザの5001行目からのデータをつかって、Lossを可視化します。同様に100コマンドをひとかたまりとして、100個分をテストしています

python

Posted by k-utsubo